Photochemical [2 + 3] Cycloaddition of C_{60} with Disiliranes ${ }^{1}$

Takeshi Akasaka and Wataru Ando

Department of Chemistry
 University of Tsukuba
 Tsukuba, Ibaraki 305, Japan

Kaoru Kobayashi and Shigeru Nagase

Department of Chemistry Faculty of Education Yokohama National University Yokohama 240, Japan

Received June 28, 1993
Organic chemical derivatization of buckminsterfullerene, C_{60}, continues to yield fascinating results. ${ }^{2-4} \mathrm{C}_{60}$ is a strong electron acceptor capable of taking on as many as six electrons, and photoexcited C_{60} is a stronger electron acceptor than C_{60} in the ground state. ${ }^{5-7}$ Although photoinduced charge-transfer between C_{60} and various electron donors such as aromatic amines, 5,8 semiconductor colloids, ${ }^{7}$ porphyrins, ${ }^{9}$ and photoconducting polymers ${ }^{10}$ can occur, there has so far been no example of formation of a photoadduct. Meanwhile, strained $\mathrm{Si}-\mathrm{Si} \sigma$ bonds can act as electron donors. ${ }^{11,12}$ We report here that the first photochemical reaction of C_{60} with a disilirane produces a [$2+3$] cycloadduct via a charge-transfer interaction.

Irradiation of a toluene solution of 1,1,2,2-tetramesityl-1,2disilirane ${ }^{11}\left(1 \mathrm{a}, 3.3 \times 10^{-3} \mathrm{M}\right)$ and $\mathrm{C}_{60}\left(3.3 \times 10^{-3} \mathrm{M}\right)$ with a high-pressure mercury-arc lamp (cutoff $<300 \mathrm{~nm}$) resulted in formation of 1,1,3,3-tetramesityl-1,3-disilolane (2a) in 82% yield ${ }^{13}$ with complete consumption of C_{60} (Scheme I). The adduct 2a

[^0]

Figure 1. (a) UV-vis spectra of $\mathrm{C}_{60}(--)$ and $2 \mathrm{a}(-)$ from 190 to 820 nm in hexane. (b) Time-dependent spectral changes of a toluene solution of C_{60} and 1a upon irradiation.

Scheme I

can be readily isolated by preparative HPLC. Very similar results were also obtained with 1,1,2,2-tetrakis(2,6-dimethylphenyl)-1,2-disilirane. ${ }^{11}$ The disiliranes were thermally unreactive toward C_{60} at $90^{\circ} \mathrm{C}$.

FAB mass spectrometry of $\mathbf{2 a}\left(\mathrm{C}_{97} \mathrm{H}_{46} \mathrm{Si}_{2}\right)$ displays a peak for 2a at $\mathrm{m} / \mathrm{z} 1270-1266$ as well as one for C_{60} at 723-720 which arises from the loss of $1 \mathbf{a}$.

The UV-vis absorption spectrum of 2 a is virtually identical to that of C_{60} except for subtle differences in the $400-500 \mathrm{~nm}$ region (Figure 1a). Photochemical changes in the absorption spectra are shown in Figure 1 b and compared with those of C_{60}. Interestingly, the spectrum of 2 a has absorption features comparable with those of the carbon ${ }^{3 f}$ and oxygen ${ }^{4 b}$ analogues of 2 a and the related carbene, ${ }^{3 a-d}$ silylene, ${ }^{1}$ and oxygen ${ }^{4}$ adducts, as one would expect from the similarity of the chromophore in these compounds.

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 a}$ displays six methyl signals at $3.16,2.90,2.41,2.17,2.13$, and 2.10 ppm and four meta-proton signals of the mesityl groups at $6.68,6.64,6.50$, and $6.46 \mathrm{ppm} .{ }^{14}$ An AB quartet ($J=13.0 \mathrm{~Hz}$) for the two methylene protons at 3.61 and 2.38 , ppm supporting C_{s} symmetry of the molecule, is also observed. The ${ }^{13} \mathrm{C}$ NMR spectrum of 2 a shows 32 signals for the C_{60} skeleton. ${ }^{14}$ Of the 32,28 signals have a relative intensity of 2 , and four signals have a relative intensity of 1: one at 73.36 ppm and the remainder between 130 and $150 \mathrm{ppm} .^{15}$ Twelve signals for four tertiary and eight quaternary aromatic carbon atoms and one signal for the methylene carbon atom of the disilirane component are also observed. These spectral data suggest C_{s} symmetry of 2a. Analysis of the $\mathrm{C}-\mathrm{H}$ three-bond coupling in the H-C COLOC NMR spectrum gave crucial

[^1] 140.95 (2), 139.10 (2), 138.57 (2), 135.38 (2), 130.58 (2), 73.36 (2).

Figure 2. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 a}$ (a) in $\mathrm{CS}_{2} / \mathrm{CD}_{2} \mathrm{Cl}_{2}$ and (b) in $\mathrm{CD}_{3} \mathrm{C}_{6} \mathrm{D}_{5}$ at different temperatures.
evidence for the identification of the 1,3-disilolane structure in 2a. A cross-peak corresponding to a proton of the methylene group and two sp^{3} carbon atoms of the fullerene skeleton at 73.36 ppm was observed. The ${ }^{29} \mathrm{Si}$ NMR spectrum of 2 a shows a peak at -9.81 ppm which is assigned to the silicon atom of 2 a . ${ }^{14,16}$

Symmetry arguments support the following possibilities: (i) a 5,6 -ring junction on the fullerene without free rotation of mesityl groups at $30^{\circ} \mathrm{C}$ and with a "frozen" (no ring inversion) single conformer in the envelope conformation; (ii) a 5,6-ring junction on the fullerene without free rotation of mesityl groups at $30^{\circ} \mathrm{C}$; and (iii) a 6,6 -ring junction on the C_{60} without free rotation of mesityl groups at $30^{\circ} \mathrm{C}$ and with a "frozen" conformer (no ring inversion).

To obtain further information on the structure of $\mathbf{2 a}$, the variable-temperature ${ }^{1} \mathrm{H}$ NMR measurement was carried out ${ }^{17}$ (Figure 2). Coalescence of the para-methyl signals at 2.06 and 1.96 ppm at $44^{\circ} \mathrm{C}$ reflecting conformational change of the molecule was observed, yielding an activation energy $\Delta G^{\neq}=17.0$ $\mathrm{kcal} / \mathrm{mol} .{ }^{18}$ The two pairs of four resonances between 6.7 and 6.3 ppm and between 3.3 and 2.3 ppm also coalesce at $60^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$, respectively. ΔG^{\neq}for both the meta-proton and orthomethyl groups at coalescence temperatures is $16.2 \mathrm{kcal} / \mathrm{mol}$. These results reveal equivalency of methylene, methyl, and aromatic protons over the coalescence temperature and supports hypothesis iii from above.

Hypothesis iii was also supported by AM1 ${ }^{19}$ and $a b$ initio 3-21 G^{20} molecular orbital calculations on the reaction of C_{60} and disilirane $\mathbf{1 b}$ which show that the 6,6 -adduct is 16.9 (AM1) and 26.5 (3-21G //AM1) kcal/mol more stable than the 5,6-adduct. The experimental finding for the C_{s} structure of 2 a (6,6 -adduct) was confirmed by the full geometry optimization at the AM1

[^2]

Figure 3. views of the C_{s} structure of 2a calculated with the AM1 method.
level; its C_{s} structure corresponds to an energy minimum and is the most stable. As the optimized structure in Figure 3 shows, four bulky mesityl groups are beautifully spaced in C_{s} symmetry with the observed equivalency. The high barrier observed is ascribed to the fact that the space between C_{60} and the mesityl groups as well as between mesityl groups becomes filled upon transformation from one envelope-conformer to the other. Such a steric effect was also reflected in the fact that the exothermicity ($34.1 \mathrm{kcal} / \mathrm{mol}$) for the addition of 1 a to C_{60} is $43.2 \mathrm{kcal} / \mathrm{mol}$ smaller than that $(77.3 \mathrm{kcal} / \mathrm{mol})$ of $\mathbf{1 b}$ at the AM1 level.

The free energy change (ΔG) from 1a to the triplet state of C_{60} is $8.1 \mathrm{kcal} / \mathrm{mol}{ }^{5 a, 21}$ The rate of disappearance of C_{60}, was suppressed by addition of 10 equiv of diazabicyclo[2.2.2]octane ($E_{\mathrm{p}}=0.70 \mathrm{~V}$ vs SCE $)^{22}$ and 100 equiv of 1,2,4,5-tetramethoxybenzene ($E_{\mathrm{p}}=0.79 \mathrm{~V} \mathrm{vs} S C E$), each of which has a lower oxidation potential and is unreactive to photoreaction of C_{60}. The reaction was completely inhibited by addition of 10 equiv of rubrene as triplet quencher. ${ }^{5 a}$ One plausible rationale for these observations is that an exciplex intermediate derived from 1a and the triplet state of C_{60} may be responsible for formation of $2 \mathrm{a} .{ }^{23}$ Further studies on the reaction mechanism are in progress.

Acknowledgment. We thank Professor Takenorì Kusumi for helpful discussions on the NMR measurement This work was partly supported by the Ministry of Education, Science, and Culture, Japan, with a Grant-in-Aid for Scientific Research on Priority Area (No. 05233204).

Supplementary Material Available: Detailed procedures for the preparation of $\mathbf{2 a}$, complete spectroscopic characterization of $\mathbf{2 a}$, and a computer-generated model of $\mathbf{2 a}$ (13 pages). Ordering information is given on any current masthead page.

[^3]
[^0]: (1) Organic Chemical Derivatization of Fullerenes. 2. For 1, see: Akasaka, T.; Ando, W.; Kobayashi, K.; Nagase, S. J. Am. Chem. Soc. 1993, 115, 1605.
 (2) (a) Wudl, F.; Hirsch, A.; Khemani, K. C.; Suzuki, T.; Allemand, P.-M. Koch, A.; Eckert, H.; Srdanov, G.; Webb, H. M. In ACS Symposium Series 481: Hammond, G. S., Kuck, V. J., Eds.; American Chemical Society: Washington, DC, 1992; p 161. (b) Hirsch, A.; Soi, A.; Karfunkel, H. R. Angew. Chem., Int. Ed. Engl. 1992, 31, 766. (c) Olah, G. A.; Bucsi, I.; Lambert, C.; Aniszfeld, R.; Trivedi, N. J.; Sensharama, D.; Prakash, G. K. S. Ibid. 1991, 113, 9385 and 9387. (d) Krusic, P. J.; Wasserman, E.; Keiser, P. N.; Morton, J. R.; Preston, K. F. Science 1991, 254, 1183.
 (3) (a) Wudl, F. Acc. Chem. Res. 1992, 25, 157. (b) Hoke, S. H., II; Molstad, J.; Dilettato, D.; Jay, M. J.; Carlson, D.; Kahr, B.; Cooks, R. G. J. Org. Chem. 1992, 57, 5069. (c) Vasella, A.; Uhlmann, P.; Waldraff, C. A. A.; Diederich, F.; Thilgen, C. Angew. Chem., Int. Ed. Engl. 1992, 31, 1388. (d) Rubin, Y.; Khan, S.; Freedberg, D. I.; Yeretzian, C. J. Am. Chem. Soc. 1993, 115, 344. (e) Prato, M.; Li, Q. C.; Wudl, F. Ibid. 1993, 115, 1148. (f) Prato, M.;Suzuki, T.; Foroudian, H.; Li, Q.; Khemani, K.; Wudl, F.; Leonetti, J.; Little, R. D.; White, T.; Rickborn, B.; Yamago, S.; Nakamura, E. Ibid. 1993, $115,1594$.
 (4) (a) Creegan, K. M.; Robbins, J. L.; Robbins, W. K.; Millar, J. M.; Sherwood, R. D.; Tindall, P. J.; Cox, D. M.; Smith, A. B., III; McCauley, J. P., Jr.; Jones, D. R.; Gallaghar, R. T. Ibid. 1992, 114, 1103. (b) Elemes, Y.; Silverman, S. K.; Sheu, C.; Kao, M.; Foote, C. S.; Alvarez, M. M.; Whetten, R. L. Angew. Chem., Int. Ed. Engl. 1992, 31, 351.
 (5) (a) Arbogast, J. W.; Foote, C. S.; Kao, M. J. Am. Chem. Soc. 1992, 114, 2277. (b) Arbogast, J. W.; Darmanyan, A. P.; Foote, C. S.; Rubin, Y.; Diederich, F. N.; Alvarez, M. M.; Anz, S. J.; Whetten, R. L. J. Phys. Chem. 1991, 95, 11.
 (6) Sension, R. J.; Szarka, A. Z.; Smith, G. R.; Hochstrasser, R. M. Chem. Phys. Lett. 1991, 185, 179.
 (7) Kamat, P. V. J. Am. Chem. Soc. 1991, 113, 9705.
 (8) Wang, Y. J. Phys. Chem. 1992, 96, 1530.
 (9) (a) Hwang, K. C.; Mauzerall, D. J. Am. Chem. Soc. 1992, 114, 9705. (b) Hwang, K. C.; Mauzerall, D. Nature 1993, 361, 138.
 (10) Wang, Y.; West, R.; Yuan, C. -H. J. Am. Chem. Soc. 1993, 115, 3844 and references cited therein.
 (11) (a) Ando, W.; Kako, M.; Akasaka, T.; Nagase, S. Organometallics 1993, 12, 1514 and references cited therein. (b) Ando, W.; Kako, M.; Akasaka, T. J. Am. Chem. Soc. 1991, 113, 6286.
 (12) (a) Traven, Y. F.; West, R. J. Am. Chem. Soc. 1973, 95, 6824. (b) Sakurai, H.; Kira, M.; Uchida, T. Ibid. 1973, 95, 6826.
 (13) $\left(\mathrm{Mes}_{4} \mathrm{Si}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{C}_{60}$ (FAB MS, $m / 21816-1812$) was also obtained in 8% yield.

[^1]: (14) The NMR measurement was carried out in the binary solvent system $\left(\mathrm{CS}_{2} / \mathrm{CD}_{2} \mathrm{Cl}_{2}=3: 1\right.$).
 (15) ${ }^{13} \mathrm{CNMR}$ ($125 \mathrm{M} \mathrm{Hz}, \mathrm{CS}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=3: 1$): δ (number of carbon atoms on C60) 147.23 (2), 146.80 (2), 146.51 (2), 146.17 (12), 145.58 (2), 145.34 (2), 144.64 (2), 144.52 (2), 144.40 (2), 144.06 (2), 143.68 (1), 143.45 (1), 142.69 (2), 142.37, 142.17 (4), 142.57 (1), 141.69 (2), 141.57 (5), 141.37 (2),

[^2]: (16) Williams, E. A. In The Chemistry of Organic Silicon Compounds;

 Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1989; p 520.
 (17) The mixed solvent, $\mathrm{CS}_{2} / \mathrm{CD}_{3} \mathrm{C}_{6} \mathrm{D}_{5}=1: 5$, was used.
 (18) ΔG^{*} values were calculated according to the Eyring equation.
 (19) Dewar, M. J. S.; Jie, C. X. Organometallics 1987, 6, 1486.
 (20) Gordon, M. S.; Bunkley, J. S.; Pople, J. A.; Pietro,W. J.; Hehre, W. J. J. Am. Chem. Soc. 1982, 104, 2797.

[^3]: (21) The ΔG value was calculated according to the Rehm-Weller equation ${ }^{24}$ $\left(\Delta G=23.06\left[E\left(\mathrm{D} / \mathrm{D}^{+}\right)-E\left(\mathrm{~A}^{-} / \mathrm{A}\right)-\Delta E_{0,0}+0.74^{25}\right)\right]$ by using the oxidation potential of $1 \mathrm{a}\left(0.81 \mathrm{~V}\right.$ vs SCE), ${ }^{\text {, }}$ a the reduction potential of $\mathrm{C}_{60}(-0.36 \mathrm{~V}$ vs SCE), ${ }^{26}$ and the triplet energy of $\mathrm{C}_{60}(1.56 \mathrm{~V}) .{ }^{5 \mathrm{a}}$
 (22) Akasaka, T.; Sato, K.; Kako, M.; Ando, W. Tetrahedron Lett. 1991, 32, 6605.
 (23) (a) Mattay, J.; Runsink, J.; Rumbach, T.; Cuong, L.; Gersdorf, J. J. Am. Chem. Soc. 1985, 107, 2557. (b) Mattay, J.; Runsink, J.; Gersdorf, J.; Rumbach, T.; Cuong, L. Helv. Chim. Acta 1986, 69, 442.
 (24) Rehm, D.; Weller, A. Isr. J. Chem. 1970, 8, 259.
 (25) Coulombic interaction energy in toluene, 0.74 , was calculated according to the literature method. ${ }^{23}$
 (26) Dubois, D.; Kadish, K. M.; Flanagan, S.; Wilson, L. J. J. Am. Chem. Soc. 1991, 113, 7773.

